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Lacunarity, fractal, and magnetic transition behaviors in a generalized Eden growth process
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The effect of an internal extra degree of freedom introduced into the simplest growth model (the Eden
model) leads to a joint physical and geometrical transition. Lacunarity, fractal, and magnetic transitions are
indeed reported to be at the same critical values of the growth parameters. A logarithmic behavior of the cluster

mass on this critical value was found.
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I. INTRODUCTION

The Eden model [1] is the simplest kinetic growth model
studied in many domains of science like soot formation [2],
colloids [2], percolation [3], growth of cell colonies [4],
crystal growth [5,6], etc. The growth starts from a single
particle called the seed. The growth then consists in ran-
domly sticking a particle on an unoccupied site in the imme-
diate neighborhood (the “perimeter””) of the previously
formed cluster. By applying this rule at each growth step,
compact clusters filling the Euclidean space are generated;
this is also the case for more specialized Eden growth rules
[7].

The introduction of an internal degree of freedom (“the
spin”) has the ambition to extend the domains of application
of the Eden model [8]. The magnetic Eden model (MEM)
generates the growth of “spin” clusters from a growth seed
which is also a “spin.” The spins can, e.g., take two states:
up and down (o0;==*1). A step of the MEM growth is de-
fined as follows. All perimeter sites are visited with an up
and a down spin. All the probabilities to glue a spin up or
down on each site are calculated. They are proportional to
the Boltzmann factor exp(—BAE) of the gain of energy BE
between the “new” cluster with one added spin and the
“old” cluster configurations. This energy BE is the dimen-
sionless Ising energy of the configuration of the cluster

BE=—g2 o.0;—BHY, a;, (1)
2an :

where the first summation is here restricted to the nearest
neighbors only. The spins are +1 or —1 in the cluster and 0
on all empty sites. The first term in Eq. (1) describes a short
range interaction (coupling) between nearest neighbor spins.
The second term defines a dimensionless energy of the ori-
entation of the spins in a “magnetic field.” It favors one spin
species over the other. The “growth probabilities” are then
normalized with respect to the sum of these over all perim-
eter sites. Through a random number generator, one chooses
the new configuration, i.e., the new spin type and the perim-
eter site. After sticking on the cluster, the new spin is frozen
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and cannot flip. One should note that for 8J =0, the spins are
decoupled and the model reduces to the simple Eden model
A1l

The spin can take a more general meaning than that of a
magnetic moment, e.g., it can be an atom of species X or Y
of a binary alloy, impurities or defects X in a growing crystal
Y, it is also known that bacterian cells like Salmonella can
present two states (some genes can be “on” or “off”) [9],
etc. The potential BH can represent at first an external mag-
netic field but can also be a chemical potential, a pressure
field, etc. The MEM thus directly opens many ways of in-
vestigation in statistical physics and other domains [1-6]
where kinetic growth models are studied. Moreover, this
model introduces a link between the magnetic models used
in statistical physics like the Ising one [10] and kinetic
growth models like Eden or diffusion-limited aggregation
(DLA) growth [2].

In this paper, the second term in Eq. (1) is fixed to zero
(BH=0). In so doing only one type of morphology is gen-
erated by the model: compact clusters [8]. However, the dis-
tribution of the spins in the clusters vary with BJ: for nega-
tive coupling values (J<0), the spins should aggregate in
an antiferromagnetic ordering, and for positive coupling,
they should aggregate in a ferromagnetic ordering in the
clusters. Both species of spins are in competition in a grow-
ing cluster. It is interesting to know for which parameters a
spin species dominates the other. Such a case can be visible
in the magnetization of the clusters which is defined by the
difference between the number of up and down spins nor-
malized by the mass of the cluster.

The one-dimensional MEM was exactly solved in [8]. We
have also shown that, in the one-dimensional case, a “tran-
sition” occurs in the magnetization at a critical value (BJ),
of the coupling parameter [11]. Above this critical value, the
magnetization is nonzero and its sign is determined by the
sign of the seed. The critical value (BJ), of the transition has
a logarithmic behavior with the mass N of the cluster [11].

The simulations of two-dimensional MEM clusters on a
square lattice show hereafter (in the SH =0 case) that a com-
pact to granular transition exists in such a case, including
lacunarity growth. The ‘“lacunarity power law exponent” is
BJ dependent and a critical coupling (8J), exists. The frac-
tal dimension of the clusters varies between 2 and a mini-
mum (about 1.8) which occurs at that critical (8J), value.
Moreover a ‘“‘magnetic transition” occurs at the same
(BJ). . The critical value (BJ),. is shown to be logarithmi-
cally size dependent: (BJ).~InN.
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II. TWO-DIMENSIONAL RESULTS

Specific morphologies of two-dimensional clusters have
been observed and are distributed in a phase diagram
(BJ, BH) [8]. Here, our attention is focussed first on granu-
larity effects. In the case of zero coupling, the MEM is sim-
ply equivalent to the Eden model and the decoupled spins are
randomly distributed in the clusters. An increase of the cou-
pling between spins leads to the formation of up and down

BJ=0.5
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FIG. 1. Three clusters of 4000 spins at different coupling values
(a) BJ=0.5, (b) BJ=1.0, and (c) BJ=1.5. The clusters have been
grown from an up spin seed. The white dots are up spins and black
dots are down spins.
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domains in growing clusters. Figure 1 exhibits three clusters
of N=4000 spins generated by the MEM from an up spin
(seed) at differents coupling values: BJ=0.5, 1.0, and 1.5.
We note that the size of the domains grow with BJ. The
patterns generated by the MEM are similar to the photo-
graphs of rapidly quenched binary alloys [12].

Figure 2 presents the fractal dimension D /7 of the up
(+ 1) species measured at different coupling values and for
clusters with N=2000 and 4000 grown from an up spin as
seed. Each point of Fig. 2 represents an average over 50
clusters, and error bars (not shown) are all close to 0.03. To
determine D; and Df , we have used the method which was
introduced by Forrest and Witten to obtain the fractal dimen-
sion of smoke aggregates [13]. This method consists in
counting the number »* and n~ of up and down spins in
boxes of different sizes &€ centered on the seed site. Fractal
dimensions D; and D of the two components are respec-
tively given by

nt~gePls (2)
and
n ~elr. (3)

The zero coupling should and does induce only a uniform
distribution. Df is then equal to the Euclidean space dimen-
sion E (E=D, =2) at BJ=0. At higher coupling values, the
size of the domains should and does approach the cluster size
[as in Fig. 1(c)] and D; is also 2 as seen in Fig. 2. However,
between these values, D; shows a V-shaped transition with a
strong minimum equal to 1.79+0.03 at the critical value
(BJ).=1.2%0.1 (for N=4000). The critical value (BJ), is
very weakly dependent on the cluster mass N (see below).
The value of the dimension D, of the down component has
large errors bars. If the growth seed is a down spin, the
observed behavior is just the opposite: the down species has
a fractal component and the up species is nonfractal.

In the antiferromagnetic regime (BJ<0), both D, and
D, are constant ~2 for all 8J<0. For J<0, up and down
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FIG. 2. The BJ dependence of the fractal dimension D, of the
up component in various clusters (the set of white dots in Fig. 1)
obtained by the Forrest and Witten method. Black squares and dots
are Df on N= 2000 and 4000 spin clusters, respectively. The clus-
ters have been grown from an up spin as seed.
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FIG. 3. The BJ dependence of the lacunarity exponent A. Each
dot results from an average over 100 clusters of N=38000 spins.

spins tend indeed to be distributed in the same proportion in
the cluster, and the method of Forrest and Witten is not sen-
sitive to a granularity transition.

The number of lacunarity sites ! per spin (i.e., the en-
semble of all empty lattice sites which are enclosed by oc-
cupied neighbors divided by the mass N) measures the grow-
ing interface where the lacunae are created and filled. The
Eden model generates only compact clusters [7]. We have
found the apparently unreported law

I~NM1 4)

with an exponent A =0.56%+0.01, for strict Eden clusters.
However, the exponent A has a BJ dependence as shown in
Fig. 3 for MEM clusters of mass up to N =38000. A transition
again occurs at (8J).~1.2%0.1, where A grows toward and
reaches unity at 2(3J). . This transition is independent of the
choice of the seed sign. We have also made simulations in
the antiferromagnetic regime (negative BJ values). Exactly
the same behavior was discovered at (8J).~—1.2*0.1.
Beside geometrical transitions, the MEM allows us to ex-
amine physical standard properties like the magnetization of
the clusters. The bulk magnetization per spin M, e.g., is de-
fined as the difference between the number of (+1) up and
(—1) down spins normalized by the cluster mass N. For
decoupled spins, the magnetization should be zero because
the spins are randomly oriented. At high coupling values, the
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FIG. 4. The BJ dependence on the magnetization per spin M for
clusters grown from an up spin seed. Black squares and dots are M
on respectively N =2000 and 4000 spin clusters.
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FIG. 5. The logarithmic behavior of the critical value (8J). as a
function of the size (or mass) N of the clusters.

first domain which has grown from the seed obviously fills
entirely the cluster and the sign of the bulk magnetization is
given by the seed sign. However, when £/ is in the interme-
diate range, we see in Fig. 4 that M varies from zero to +1
for N=2000 and 4000 spin cluster cases grown from an up
spin as seed. A transition clearly appears and is at the same
previous geometrical critical value. It is weakly cluster size
dependent. We stress but do not show here that for 8J <0,
the same behavior as described here for the magnetization
transition exists if sublattices are considered.

The magnetization of clusters was measured for different
cluster sizes N. Figure 5 reports the mass dependence of the
critical value (BJ).. A logarithmic behavior is obviously
found, as in the one-dimensional case [11].

Thus for a fixed size N of the clusters, there exists a
critical value (3J). above which the spin species of the seed
dominates the other spin species. Conversely, for a fixed cou-
pling value BJ, there exists a critical mass N, below which
the spin species of the seed dominates the other spin species.

H1. CONCLUSION

In conclusion, we have observed geometrical transitions
and transitions in physical properties in a generalized Eden
model. We have reported the behavior of the lacunarity ex-
ponent A. Further studies should relate this exponent with
kinetic exponents (a and z) which describe the kinetics of
self-affine surfaces [14]. The critical value of the growth
parameter (J). depends logarithmically on the cluster mass
N. This also illustrates that the kinetic growth process of
MEM is intimately related to the coupling parameter BJ.
Results taking into account the effect of a thermodynamic
field BH [second term of Eq. (1)] should be of interest.
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FIG. 1. Three clusters of 4000 spins at different coupling values
(a) BI=0.5, (b) BJ=1.0, and (c) BJ =1.5. The clusters have been
grown from an up spin seed. The white dots are up spins and black
dots are down spins.



